
Wave 
omponent of free-surfa
e Green fun
tionX.B. Chen1;2SummaryThe Green fun
tion represented by a double Fourier integral asso
iated withthe free-surfa
e dispersive and 
uid dissipative e�e
ts in water wave problems isanalyzed. Further to that performed in [6℄ asso
iated with a real dispersion fun
-tion, the approximation of the Green fun
tion asso
iated with a 
omplex dispersionfun
tion gives the wave 
omponent whi
h keeps the same analyti
al features asthose revealed in [2℄ but with an exponentially-de
reasing amplitude fun
tion dueto the dissipative e�e
t. The appli
ation to steady ship waves with gravity andsurfa
e-tension e�e
t as well as 
uid dissipation is then performed.Introdu
tionWith the presen
e of a free surfa
e, 
uid 
ows underneath are 
ommonly de-s
ribed by an integral representation resultant from the appli
ation of Fourier trans-form te
hnique. In the three-dimensional water wave problems, the double Fourierintegral with respe
t to the horizontal spa
e 
oordinates and wavenumber ve
torsare derived to represent 
ow 
hara
teristi
s su
h as 
ow velo
ity, pressure, velo
itypotential and free-surfa
e wave pro�le. In parti
ular, the Green fun
tion repre-senting the velo
ity potential generated by a point sour
e or by a distribution ofsingularities is of typeG = Z 1�1d�Z 1�1d� ND exp(�i') (1)where G 
an be 
ow velo
ities, pressure, velo
ity potential or wave elevation. Theterm N=D is often denoted by A=N=D and 
alled as amplitude fun
tion so that Nand D are respe
tively the numerator and denominator of the amplitude fun
tion.The fun
tion '=�x+�y equal to the produ
t of spa
e ve
tor (x; y) and the ve
tor(�; �) of Fourier variables in the elementary wave fun
tion E=exp(�i') is 
alledthe phase fun
tion.The potential 
ow represented by (1) asso
iated with D=D+i��1 with a realfun
tion D and a sign fun
tion �1(=�1) at the limit of �! 0 has been analyzed in[6℄. The de
omposition of (1) into wave and lo
al 
omponents is obtained. Followingthe same prin
iple, the most general 
ase of (1) asso
iated with a 
omplex fun
tionD is analyzed here. The 
ase of free-surfa
e 
ow around an advan
ing ship is
onsidered. The wave 
omponent is obtained by an approximative analysis andexpressed by a single integral along the 
urve(s) de�ned by <fDg = 0. The steadyship waves is then presented as an example of appli
ations.1Resear
h Department, Bureau Veritas, Paris La D�efense, 92077, Fran
e.2Professorship, College of Shipbuilding Engineering, Harbin Engineering University,Harbin, 150001, China.
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Green fun
tion of free-surfa
e 
owThe potential 
ow due to a ship advan
ing at a 
onstant speed U along a straightpath through a train of regular waves at a frequen
y of en
ounter ! is observed froma translating system of 
oordinates following the mean forward motion of the ship.The x axis is 
hosen along the path of the ship, z axis verti
al and points upward andthe mean free surfa
e is taken as the plane z=0. The velo
ity potential is expressedby the sum of a term of simple singularities and a term a

ount of free-surfa
e e�e
tin form of the double Fourier integral (1). The numerator N =S exp(kz) with S thespe
trum fun
tion asso
iated with a distribution of singularity (S = 1 for a pointsour
e) and the 
omplex dispersion fun
tion is de�ned byD = D + i�B (2)in whi
h the real part of the dispersion fun
tion is givenD = (���)2 � k � �2k3 with k =p�2 + �2 (3)and the imaginary part is asso
iated with the small positive parameter �� 1 andthe fun
tionB = �4(���)k2 (4)derived from the dissipative e�e
t in 
uid.In (3), f = !pL=g is the nondimensional frequen
y, F = U=pgL the Froudenumber and the parameter �=fF . L and g are the ship length and the a

elerationof gravity. Furthermore, the parameter � in (3) is de�ned by� =pT=(�gL2)=F 2 (5)representing the ratio between the 
hara
teristi
 wavenumber of 
apillary waves andthat of gravity ship waves. In (5), T is the surfa
e tension (T =0:074 N/m for theair-water interfa
e at 20ÆC).The imaginary part +i�B in (2) is asso
iated with the 
uid vis
osity. Theequation system of Stokes or Oseen type is established in [1℄ and [5℄. By assumingthat the 
uid velo
ity is 
omposed of a potential part and a rotational part, thefree-surfa
e elevation is represented by a double Fourier integral of type (1) with a
omplex dispersion fun
tion similar to (2) where terms of order O(�3=2) or higherare negle
ted. The parameter � for the steady 
ow is de�ned in [1℄ and [5℄ as� = �g=U3 = (1=R)=F 2 (6)with � the kinemati
 vis
osity and R the Reynolds number.Wave 
omponent of free-surfa
e 
owSin
e � � 1, the amplitude fun
tion A=N=D has large variation a
ross thedispersion 
urves de�ned by D=0. It is then natural to make a transform of the
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double Fourier integral (1) by 
hanging integral variables as :G = Z 1�1d�Z 1�1d� ND exp(�i') = XD=0 ZD=0ds Z N2�N1dn ND exp(�i') (7)sin
e d�d� = dsdn. The interval of the inner integral is denoted by (�N1; N2).In (7), �D=0 means summation over all the dispersion 
urves, ds is the di�erentialelement of ar
 length of a dispersion 
urve and dn the di�erential element of ar
length alone 
urves orthogonal to the dispersion 
urves.To evaluate the inner integral, we use the Taylor development at D=0 ofN =N0 +O(D) ; B=B0 +O(D) and '='0 + '00D +O(D2) (8)The subs
ript (0) indi
ates values at a dispersion 
urve D=0 and the supers
ript(0) indi
ates derivatives with respe
t to D. The derivative of the phase fun
tion isevaluated by'0 = �'�D = 1jjrDjj �'�n = 1jjrDjjr' rDjjrDjj = r'rDjjrDjj2 (9)where we have used the relations~n = rD=jjrDjj and dn = dD=jjrDjj (10)Sin
e ' = �x+ �y, we have'0 = (xD� + yD�)=jjrDjj2 (11)The inner integral in (7) 
an now be estimated byZ N2�N1dn ND exp(�i') � N0jjrDjj0 exp(�i'0) Z 1�1dD exp(�i'00D)D + i�B0 (12)The integral on the right hand side is given byZ 1�1dD exp(�i'00D)D + i�B0 = �i2�H(B0'0)sign('00) exp(��B0'00) (13)a

ording to Lighthill (Eq.54 in [4℄). In (13), H(�) is Heaveside's unit fun
tion and2H(B0'0)sign('00) = sign(B0) + sign('00) (14)so thatG � �i�XD=0 ZD=0ds �sign(B) + sign(xD�+yD�)� ENjjrDjj exp(�i') (15)in whi
h we have simpli�ed the writing of (N0; B0; '0; jjrDjj0) by (N ; B; '; jjrDjj)along the dispersion 
urves D = 0, and sign('0) = sign(xD�+yD�) a

ording to
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(11). The term E is de�nded as exp(��B'0). When � ! 0, the term E ! 1sin
e B <1 along the dispersion 
urves. At this limit, (15) be
omes Eq.27b in [6℄whi
h represents the wave 
omponent. A

ordingly, the formula (15) is expe
tedto represent the wave 
omponent of (1). Comparing (15) with Eq.27b in [6℄, allresults obtained in [2℄ on the wave 
omponent remain valid. The additional termE = exp(��B'0) in the amplitude fun
tion does not introdu
e any modi�
ation tothe wave form. As an exponentially de
reasing (damping) term, it represents onlythe dissipative e�e
t. Steady ship wavesWe 
onsider the spe
ial 
ase of steady 
ow for whi
h f = 0 = � so that the realdispersion fun
tion (3) be
omes D= k(k 
os2 ��1��2k2) and the imaginary part(4) be
omes B=�4k3 
os � in polar 
oordinates (k; �). Only two dispersion 
urves(D=0) exist and are symmetri
al with respe
t to both axes �=0 and �=0. In thequadrant � � 0 and � � 0, the dispersion 
urve is de�ned expli
itlyk(�) = (kg(�) = 2=� 
os2 � +p
os4 � � 4�2 � k � k�kT (�) = � 
os2 � +p
os4 � � 4�2 �=(2�2) k � k� (16)with k�=1=�. The 
urve des
ribed by (16) is a 
losed one limited in the region0 � � � �� with �� = ar
tan �p(1�2�)=(2�) � (17)At �=�� we have k=k�. At �=0, we de�nek0g=2=�1+p1�4�2 � and k0T =�1+p1�4�2 �=(2�2) (18)so that the dispersion 
urve interse
ts the �-axis at �=k0g and �=k0T .The dispersion 
urves given by (16) are depi
ted on the left part of Fig.1 at aFroude number F =0:1 (using L=1 m) for �=0 when the surfa
e tension is ignoredand �=0:275 when the surfa
e tension is in
luded. The dispersion 
urve withoutthe surfa
e tension (�=0) represented by the dashed line is given by k=1= 
os2 �and 
orresponds to the 
ase usually 
alled Neumann-Kelvin ship waves. It is anopen 
urve as k !1 when � ! �=2. The dispersion 
urve with the surfa
e tension
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(� 6= 0) is a 
losed one with a maximum wavenumber k0T de�ned by (18). The point(k� ; ��) divides the dispersion 
urve into two portions : one (kg < k� , thi
k solidline) along whi
h the e�e
t of gravity is dominant and another (kT >k� , thin solidline) along whi
h the 
apillarity is dominant.On the right part of Fig.1, we depi
t the 
restlines following the formulation(Eq.15 in [2℄) for n = (1; 2; � � � ; 5) asso
iated with the dispersion 
urves plottedon the left part of the �gure. The Neumann-Kelvin ship waves represented bydashed lines 
omposed of transverse and divergent waves are present only in thedownstream and limited by a 
usp line (dot-dashed line). The ship waves in
ludingthe surfa
e tension are present in both upstream and downstream. The upstream
restlines asso
iated with the part of dispersion 
urve at kT >k� are 
apillary wavesand plotted by thin solid lines. The wavelength of upstream 
apillary waves is oforder 2�F 2=k0T .The downstream 
restlines (thi
k solid lines) asso
iated with the part of disper-sion 
urve at kg <k� are gravity-dominant waves. Comparing to the pure-gravitywaves (dashed lines), the transverse waves keep the same pro�le with a slight shorterwavelength 2�F 2=k0g instead of 2�F 2. The most striking feature 
on
erns the di-vergent waves whi
h disappear 
ompletely at this value of � (in fa
t for �>�0 givenin the following) due to the e�e
t of surfa
e tension. In their pla
e, the transversewaves are extended smoothly outward to a region limited by the ray (dotted line)forming an angle 
� with the negative-x axis de�ned in
 = ar
tan[y=(�x)℄ � 
� = �=2� �� (19)The 
restlines for n=(1; 2; � � � ; 5) are depi
ted on Fig.2 for �=0:02 (left part). Onlythose of downstream waves are drawn for the sake of 
larity. The transverse wavesare represented by thi
k solid lines and the divergent waves by thin solid lines, whilethe rest of 
apillary-gravity waves by dashed lines limited by the dotted ray (
=
�).
�=0 at �=0 means that no 
apillary waves exist sin
e the e�e
t of surfa
e tensionis ignored. At � = �m = 1=2, the dispersion 
urve redu
es to a point (2; 0) and
�=�=2 whi
h means that all steady waves disappear (no wavy deformation of thefree surfa
e) sin
e ship's speed is less than the minimum velo
ity of 
apillary-gravitywaves so that waves propagating at ship's speed 
annot be generated.There are two other important rays, more evident on the right part of Fig.2on whi
h only 
restlines of divergent waves are kept. One represented by the thin
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dot-dashed line is 
lose to the 
usp line of Kelvin ship waves, and another by thi
kdot-dashed line. We denote the two rays respe
tively by 
 = 

 and 
 = 
0 theangles forming with the negative-x axis. Same as 
�, the ray-angles 

 and 
0 arefun
tion of the parameter �. Following Eq.13 in [2℄, the value of 

 is asso
iatedwith the normal dire
tion at the �rst point of in
e
tion along the dispersion 
urve,whi
h is quite 
lose to that for the Neumann-Kelvin ship waves. There exists ase
ond in
e
tion point along the dispersion 
urve of 
apillary-gravity ship waves atlow values of �. The value of 
0 is given by the normal dire
tion at this se
ondpoint of in
e
tion. The ray-angle 

 be
omes the 
usp angle 
0
 =

(�=0) � 19Æ280of pure-gravity ship waves when � ! 0 while 
0 tends to zero. It is shown that thedivergent waves 
an be found only in the region (
0�
�

) where transverse wavesappear as well. In the region near the ship's tra
k (0�
�
0), only transverse wavesare present. Sin
e 
0 in
reases signi�
antly with in
reasing � (
orresponding to thede
rease of forward speed), the region (
0<
<

) where divergent waves appear ismore and more redu
ed. At �=�0 � 0:133 (
orresponding to U=U0 � 0:450 m/s),there does not exist any divergent wave.The damping term E = exp(��B'0) due to 
uid vis
osity 
an be evaluated byusing (11) for '0 and B = �4k3 
os �. In parti
ular, the gravity-dominant transversewaves in the downstream is dissipated at a rate proportional toEd � exp ��4(k0g)2x� with k0g � 1 for x < 0 (20)while the amplitude of 
apillary-dominant waves in the upstream is damped at arate proportional toEu � exp ���4(k0T )2x� with k0T � 1=�2 for x > 0 (21)To redu
e by a fa
tor of e through the vis
osity dissipation, the distan
es to travelfrom the singularity are jxdj � 1=(4�) for the gravity waves and xu � �4=(4�) for
apillary waves, whi
h is ��4 times shorter than that for gravity waves!Referen
e1. Chan A.T. and Chwang A.T. (2000) "The unsteady stokeslet and oseenlet",Pro
 Instn Me
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tion for ship motions", J. Fluid Me
hani
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