
Wave omponent of free-surfae Green funtionX.B. Chen1;2SummaryThe Green funtion represented by a double Fourier integral assoiated withthe free-surfae dispersive and uid dissipative e�ets in water wave problems isanalyzed. Further to that performed in [6℄ assoiated with a real dispersion fun-tion, the approximation of the Green funtion assoiated with a omplex dispersionfuntion gives the wave omponent whih keeps the same analytial features asthose revealed in [2℄ but with an exponentially-dereasing amplitude funtion dueto the dissipative e�et. The appliation to steady ship waves with gravity andsurfae-tension e�et as well as uid dissipation is then performed.IntrodutionWith the presene of a free surfae, uid ows underneath are ommonly de-sribed by an integral representation resultant from the appliation of Fourier trans-form tehnique. In the three-dimensional water wave problems, the double Fourierintegral with respet to the horizontal spae oordinates and wavenumber vetorsare derived to represent ow harateristis suh as ow veloity, pressure, veloitypotential and free-surfae wave pro�le. In partiular, the Green funtion repre-senting the veloity potential generated by a point soure or by a distribution ofsingularities is of typeG = Z 1�1d�Z 1�1d� ND exp(�i') (1)where G an be ow veloities, pressure, veloity potential or wave elevation. Theterm N=D is often denoted by A=N=D and alled as amplitude funtion so that Nand D are respetively the numerator and denominator of the amplitude funtion.The funtion '=�x+�y equal to the produt of spae vetor (x; y) and the vetor(�; �) of Fourier variables in the elementary wave funtion E=exp(�i') is alledthe phase funtion.The potential ow represented by (1) assoiated with D=D+i��1 with a realfuntion D and a sign funtion �1(=�1) at the limit of �! 0 has been analyzed in[6℄. The deomposition of (1) into wave and loal omponents is obtained. Followingthe same priniple, the most general ase of (1) assoiated with a omplex funtionD is analyzed here. The ase of free-surfae ow around an advaning ship isonsidered. The wave omponent is obtained by an approximative analysis andexpressed by a single integral along the urve(s) de�ned by <fDg = 0. The steadyship waves is then presented as an example of appliations.1Researh Department, Bureau Veritas, Paris La D�efense, 92077, Frane.2Professorship, College of Shipbuilding Engineering, Harbin Engineering University,Harbin, 150001, China.
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Green funtion of free-surfae owThe potential ow due to a ship advaning at a onstant speed U along a straightpath through a train of regular waves at a frequeny of enounter ! is observed froma translating system of oordinates following the mean forward motion of the ship.The x axis is hosen along the path of the ship, z axis vertial and points upward andthe mean free surfae is taken as the plane z=0. The veloity potential is expressedby the sum of a term of simple singularities and a term aount of free-surfae e�etin form of the double Fourier integral (1). The numerator N =S exp(kz) with S thespetrum funtion assoiated with a distribution of singularity (S = 1 for a pointsoure) and the omplex dispersion funtion is de�ned byD = D + i�B (2)in whih the real part of the dispersion funtion is givenD = (���)2 � k � �2k3 with k =p�2 + �2 (3)and the imaginary part is assoiated with the small positive parameter �� 1 andthe funtionB = �4(���)k2 (4)derived from the dissipative e�et in uid.In (3), f = !pL=g is the nondimensional frequeny, F = U=pgL the Froudenumber and the parameter �=fF . L and g are the ship length and the aelerationof gravity. Furthermore, the parameter � in (3) is de�ned by� =pT=(�gL2)=F 2 (5)representing the ratio between the harateristi wavenumber of apillary waves andthat of gravity ship waves. In (5), T is the surfae tension (T =0:074 N/m for theair-water interfae at 20ÆC).The imaginary part +i�B in (2) is assoiated with the uid visosity. Theequation system of Stokes or Oseen type is established in [1℄ and [5℄. By assumingthat the uid veloity is omposed of a potential part and a rotational part, thefree-surfae elevation is represented by a double Fourier integral of type (1) with aomplex dispersion funtion similar to (2) where terms of order O(�3=2) or higherare negleted. The parameter � for the steady ow is de�ned in [1℄ and [5℄ as� = �g=U3 = (1=R)=F 2 (6)with � the kinemati visosity and R the Reynolds number.Wave omponent of free-surfae owSine � � 1, the amplitude funtion A=N=D has large variation aross thedispersion urves de�ned by D=0. It is then natural to make a transform of the
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double Fourier integral (1) by hanging integral variables as :G = Z 1�1d�Z 1�1d� ND exp(�i') = XD=0 ZD=0ds Z N2�N1dn ND exp(�i') (7)sine d�d� = dsdn. The interval of the inner integral is denoted by (�N1; N2).In (7), �D=0 means summation over all the dispersion urves, ds is the di�erentialelement of ar length of a dispersion urve and dn the di�erential element of arlength alone urves orthogonal to the dispersion urves.To evaluate the inner integral, we use the Taylor development at D=0 ofN =N0 +O(D) ; B=B0 +O(D) and '='0 + '00D +O(D2) (8)The subsript (0) indiates values at a dispersion urve D=0 and the supersript(0) indiates derivatives with respet to D. The derivative of the phase funtion isevaluated by'0 = �'�D = 1jjrDjj �'�n = 1jjrDjjr' rDjjrDjj = r'rDjjrDjj2 (9)where we have used the relations~n = rD=jjrDjj and dn = dD=jjrDjj (10)Sine ' = �x+ �y, we have'0 = (xD� + yD�)=jjrDjj2 (11)The inner integral in (7) an now be estimated byZ N2�N1dn ND exp(�i') � N0jjrDjj0 exp(�i'0) Z 1�1dD exp(�i'00D)D + i�B0 (12)The integral on the right hand side is given byZ 1�1dD exp(�i'00D)D + i�B0 = �i2�H(B0'0)sign('00) exp(��B0'00) (13)aording to Lighthill (Eq.54 in [4℄). In (13), H(�) is Heaveside's unit funtion and2H(B0'0)sign('00) = sign(B0) + sign('00) (14)so thatG � �i�XD=0 ZD=0ds �sign(B) + sign(xD�+yD�)� ENjjrDjj exp(�i') (15)in whih we have simpli�ed the writing of (N0; B0; '0; jjrDjj0) by (N ; B; '; jjrDjj)along the dispersion urves D = 0, and sign('0) = sign(xD�+yD�) aording to
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(11). The term E is de�nded as exp(��B'0). When � ! 0, the term E ! 1sine B <1 along the dispersion urves. At this limit, (15) beomes Eq.27b in [6℄whih represents the wave omponent. Aordingly, the formula (15) is expetedto represent the wave omponent of (1). Comparing (15) with Eq.27b in [6℄, allresults obtained in [2℄ on the wave omponent remain valid. The additional termE = exp(��B'0) in the amplitude funtion does not introdue any modi�ation tothe wave form. As an exponentially dereasing (damping) term, it represents onlythe dissipative e�et. Steady ship wavesWe onsider the speial ase of steady ow for whih f = 0 = � so that the realdispersion funtion (3) beomes D= k(k os2 ��1��2k2) and the imaginary part(4) beomes B=�4k3 os � in polar oordinates (k; �). Only two dispersion urves(D=0) exist and are symmetrial with respet to both axes �=0 and �=0. In thequadrant � � 0 and � � 0, the dispersion urve is de�ned expliitlyk(�) = (kg(�) = 2=� os2 � +pos4 � � 4�2 � k � k�kT (�) = � os2 � +pos4 � � 4�2 �=(2�2) k � k� (16)with k�=1=�. The urve desribed by (16) is a losed one limited in the region0 � � � �� with �� = artan �p(1�2�)=(2�) � (17)At �=�� we have k=k�. At �=0, we de�nek0g=2=�1+p1�4�2 � and k0T =�1+p1�4�2 �=(2�2) (18)so that the dispersion urve intersets the �-axis at �=k0g and �=k0T .The dispersion urves given by (16) are depited on the left part of Fig.1 at aFroude number F =0:1 (using L=1 m) for �=0 when the surfae tension is ignoredand �=0:275 when the surfae tension is inluded. The dispersion urve withoutthe surfae tension (�=0) represented by the dashed line is given by k=1= os2 �and orresponds to the ase usually alled Neumann-Kelvin ship waves. It is anopen urve as k !1 when � ! �=2. The dispersion urve with the surfae tension
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(� 6= 0) is a losed one with a maximum wavenumber k0T de�ned by (18). The point(k� ; ��) divides the dispersion urve into two portions : one (kg < k� , thik solidline) along whih the e�et of gravity is dominant and another (kT >k� , thin solidline) along whih the apillarity is dominant.On the right part of Fig.1, we depit the restlines following the formulation(Eq.15 in [2℄) for n = (1; 2; � � � ; 5) assoiated with the dispersion urves plottedon the left part of the �gure. The Neumann-Kelvin ship waves represented bydashed lines omposed of transverse and divergent waves are present only in thedownstream and limited by a usp line (dot-dashed line). The ship waves inludingthe surfae tension are present in both upstream and downstream. The upstreamrestlines assoiated with the part of dispersion urve at kT >k� are apillary wavesand plotted by thin solid lines. The wavelength of upstream apillary waves is oforder 2�F 2=k0T .The downstream restlines (thik solid lines) assoiated with the part of disper-sion urve at kg <k� are gravity-dominant waves. Comparing to the pure-gravitywaves (dashed lines), the transverse waves keep the same pro�le with a slight shorterwavelength 2�F 2=k0g instead of 2�F 2. The most striking feature onerns the di-vergent waves whih disappear ompletely at this value of � (in fat for �>�0 givenin the following) due to the e�et of surfae tension. In their plae, the transversewaves are extended smoothly outward to a region limited by the ray (dotted line)forming an angle � with the negative-x axis de�ned in = artan[y=(�x)℄ � � = �=2� �� (19)The restlines for n=(1; 2; � � � ; 5) are depited on Fig.2 for �=0:02 (left part). Onlythose of downstream waves are drawn for the sake of larity. The transverse wavesare represented by thik solid lines and the divergent waves by thin solid lines, whilethe rest of apillary-gravity waves by dashed lines limited by the dotted ray (=�).�=0 at �=0 means that no apillary waves exist sine the e�et of surfae tensionis ignored. At � = �m = 1=2, the dispersion urve redues to a point (2; 0) and�=�=2 whih means that all steady waves disappear (no wavy deformation of thefree surfae) sine ship's speed is less than the minimum veloity of apillary-gravitywaves so that waves propagating at ship's speed annot be generated.There are two other important rays, more evident on the right part of Fig.2on whih only restlines of divergent waves are kept. One represented by the thin
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dot-dashed line is lose to the usp line of Kelvin ship waves, and another by thikdot-dashed line. We denote the two rays respetively by  =  and  = 0 theangles forming with the negative-x axis. Same as �, the ray-angles  and 0 arefuntion of the parameter �. Following Eq.13 in [2℄, the value of  is assoiatedwith the normal diretion at the �rst point of inetion along the dispersion urve,whih is quite lose to that for the Neumann-Kelvin ship waves. There exists aseond inetion point along the dispersion urve of apillary-gravity ship waves atlow values of �. The value of 0 is given by the normal diretion at this seondpoint of inetion. The ray-angle  beomes the usp angle 0 =(�=0) � 19Æ280of pure-gravity ship waves when � ! 0 while 0 tends to zero. It is shown that thedivergent waves an be found only in the region (0��) where transverse wavesappear as well. In the region near the ship's trak (0��0), only transverse wavesare present. Sine 0 inreases signi�antly with inreasing � (orresponding to thederease of forward speed), the region (0<<) where divergent waves appear ismore and more redued. At �=�0 � 0:133 (orresponding to U=U0 � 0:450 m/s),there does not exist any divergent wave.The damping term E = exp(��B'0) due to uid visosity an be evaluated byusing (11) for '0 and B = �4k3 os �. In partiular, the gravity-dominant transversewaves in the downstream is dissipated at a rate proportional toEd � exp ��4(k0g)2x� with k0g � 1 for x < 0 (20)while the amplitude of apillary-dominant waves in the upstream is damped at arate proportional toEu � exp ���4(k0T )2x� with k0T � 1=�2 for x > 0 (21)To redue by a fator of e through the visosity dissipation, the distanes to travelfrom the singularity are jxdj � 1=(4�) for the gravity waves and xu � �4=(4�) forapillary waves, whih is ��4 times shorter than that for gravity waves!Referene1. Chan A.T. and Chwang A.T. (2000) "The unsteady stokeslet and oseenlet",Pro Instn Meh Engrs, 214, Part C, 175-179.2. Chen X.B. (2004) "Analytial features of unsteady ship waves", The TheodoreY.-T. Wu Symp. on Engineering Mehanis, World Sienti� Pub. Co.3. Chen X.B. and Wu G.X. (2001) "On singular and highly osillatory propertiesof the Green funtion for ship motions", J. Fluid Mehanis, 445, 77-91.4. Lighthill M.J. (1958) "An introdution to Fourier analysis and generalisedfuntions", Cambridge University Press.5. Lu D.Q. (2002) "Unsteady free-surfae waves generated by bodies in a visousuid", Ph.D. Thesis, The University of Hong Kong, Hong Kong, China.6. Noblesse F. and Chen X.B. (1995) "Deomposition of free-surfae e�ets intowave and near-�eld omponents", Ship Tehnology Researh, 42, 167-185.
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