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Wave component of free-surface Green function

X.B. Chen'2

Summary

The Green function represented by a double Fourier integral associated with
the free-surface dispersive and fluid dissipative effects in water wave problems is
analyzed. Further to that performed in [6] associated with a real dispersion func-
tion, the approximation of the Green function associated with a complex dispersion
function gives the wave component which keeps the same analytical features as
those revealed in [2] but with an exponentially-decreasing amplitude function due
to the dissipative effect. The application to steady ship waves with gravity and
surface-tension effect as well as fluid dissipation is then performed.

Introduction

With the presence of a free surface, fluid flows underneath are commonly de-
scribed by an integral representation resultant from the application of Fourier trans-
form technique. In the three-dimensional water wave problems, the double Fourier
integral with respect to the horizontal space coordinates and wavenumber vectors
are derived to represent flow characteristics such as flow velocity, pressure, velocity
potential and free-surface wave profile. In particular, the Green function repre-
senting the velocity potential generated by a point source or by a distribution of
singularities is of type

6= . 3023 / %%exm—m (1)

where G can be flow velocities, pressure, velocity potential or wave elevation. The
term N'/D is often denoted by A=NA/D and called as amplitude function so that A’
and D are respectively the numerator and denominator of the amplitude function.
The function ¢ =az+ Py equal to the product of space vector (z,y) and the vector
(a, B) of Fourier variables in the elementary wave function E = exp(—igp) is called
the phase function.

The potential flow represented by (1) associated with D= D+ieX; with a real
function D and a sign function X;(=+1) at the limit of € — 0 has been analyzed in
[6]. The decomposition of (1) into wave and local components is obtained. Following
the same principle, the most general case of (1) associated with a complex function
D is analyzed here. The case of free-surface flow around an advancing ship is
considered. The wave component is obtained by an approximative analysis and
expressed by a single integral along the curve(s) defined by R{D} = 0. The steady
ship waves is then presented as an example of applications.
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Green function of free-surface flow

The potential flow due to a ship advancing at a constant speed U along a straight
path through a train of regular waves at a frequency of encounter w is observed from
a translating system of coordinates following the mean forward motion of the ship.
The z axis is chosen along the path of the ship, z axis vertical and points upward and
the mean free surface is taken as the plane z=0. The velocity potential is expressed
by the sum of a term of simple singularities and a term account of free-surface effect
in form of the double Fourier integral (1). The numerator A'=.S exp(kz) with S the
spectrum function associated with a distribution of singularity (S =1 for a point
source) and the complex dispersion function is defined by

D=D+iuB (2)
in which the real part of the dispersion function is given

D= (a—7)? —k—0%* with k=+/a?+ 2 (3)

and the imaginary part is associated with the small positive parameter 4 < 1 and
the function

B = —4(a—1)k* (4)
derived from the dissipative effect in fluid.

In (3), f =w+/L/g is the nondimensional frequency, F' = U/+/gL the Froude
number and the parameter 7= fF. L and g are the ship length and the acceleration
of gravity. Furthermore, the parameter o in (3) is defined by

o =/T/(pgL?)/F? (5)

representing the ratio between the characteristic wavenumber of capillary waves and
that of gravity ship waves. In (5), T' is the surface tension (7'=0.074 N/m for the
air-water interface at 20°C).

The imaginary part +iuB in (2) is associated with the fluid viscosity. The
equation system of Stokes or Oseen type is established in [1] and [5]. By assuming
that the fluid velocity is composed of a potential part and a rotational part, the
free-surface elevation is represented by a double Fourier integral of type (1) with a
complex dispersion function similar to (2) where terms of order O(u?/?) or higher
are neglected. The parameter u for the steady flow is defined in [1] and [5] as

p=vg/U*=(1/R)/F* (6)

with v the kinematic viscosity and R the Reynolds number.

Wave component of free-surface flow

Since u < 1, the amplitude function A =A /D has large variation across the
dispersion curves defined by D =0. It is then natural to make a transform of the
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double Fourier integral (1) by changing integral variables as :

G = /dﬁ/da—exp —ip) Z/ dn—exp(—zga) (7)

since dadf = dsdn. The interval of the inner integral is denoted by (—Ni, N»).
In (7), ¥p=p means summation over all the dispersion curves, ds is the differential
element of arc length of a dispersion curve and dn the differential element of arc
length alone curves orthogonal to the dispersion curves.

To evaluate the inner integral, we use the Taylor development at D =0 of
N=No+O(D), B=By+0(D) and ¢=pg+ ¢,D + O(D?) (8)

The subscript (o) indicates values at a dispersion curve D =0 and the superscript
(') indicates derivatives with respect to D. The derivative of the phase function is
evaluated by

, _O0p 1 0p 1 VD  VpVD

gm0 1 00 ©
oD ~ [VD[on  |VD] YIVD| ~ |VDJ?
where we have used the relations
i =VD/|VD| and dn=dD/|VD| (10)
Since ¢ = az + Sy, we have
¢' = (¢Do +yDp)/|VD|? (11)
The inner integral in (7) can now be estimated by
N> N 0 _exp(—ipyD)
dn 2= exp(—ip) ~ ——2 exp(—i /dDi,0 12
-m D p(~i¢) VDo p(~ivo) —o D+ ipBo (12)
The integral on the right hand side is given by
exp(—ipy D) . .
[ ADEREAE) — a5y () exp(- o) (13)

according to Lighthill (Eq.54 in [4]). In (13), H(-) is Heaveside’s unit function and

2H (Boy')sign(ypp) = sign(Bo) + sign(yp) (14)

so that

_WZ ds [sign(B) + sign(zDy +yD3)] exp(—ip) (15)

EN
D
in which we have simplified the writing of (Ng, B, o, |VD|o) by (N, B, ¢, |VD])
along the dispersion curves D =0, and sign(¢') = sign(zD, +yDpg) according to
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(11). The term & is definded as exp(—uBy'). When u — 0, the term £ — 1
since B < oo along the dispersion curves. At this limit, (15) becomes Eq.27b in [6]
which represents the wave component. Accordingly, the formula (15) is expected
to represent the wave component of (1). Comparing (15) with Eq.27b in [6], all
results obtained in [2] on the wave component remain valid. The additional term
& = exp(—puBy') in the amplitude function does not introduce any modification to
the wave form. As an exponentially decreasing (damping) term, it represents only
the dissipative effect.

Steady ship waves
We consider the special case of steady flow for which f = 0 = 7 so that the real
dispersion function (3) becomes D = k(k cos?—1—02k?) and the imaginary part
(4) becomes B =—4k? cosf in polar coordinates (k,#). Only two dispersion curves
(D =0) exist and are symmetrical with respect to both axes a=0 and =0. In the
quadrant a > 0 and 8 > 0, the dispersion curve is defined explicitly

k(e):{kQ(G)ZQ/(COSQG+\/W) k <k,

kr(6) = (cos® 6 + Vecos* 0 —402)/(20%) k> ko, (16)

with k, =1/0. The curve described by (16) is a closed one limited in the region
0<6<6, with 6, = arctan [\/(1—20)/(20) | (17)
At =0, we have k=k,. At §=0, we define
ky=2/(1+v1-40%) and ky=(1+v1-40%)/(207) (18)
so that the dispersion curve intersects the a-axis at a=kj) and a =kj..

The dispersion curves given by (16) are depicted on the left part of Fig.1 at a
Froude number F =0.1 (using L=1 m) for 0 =0 when the surface tension is ignored
and o =0.275 when the surface tension is included. The dispersion curve without
the surface tension (o0 =0) represented by the dashed line is given by k=1/cos?
and corresponds to the case usually called Neumann-Kelvin ship waves. It is an
open curve as k — oo when 6 — /2. The dispersion curve with the surface tension
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Figure 1: Dispersion curves (left) and crestlines (right) of capillary-gravity ship waves
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(o0 #0) is a closed one with a maximum wavenumber k3. defined by (18). The point
(ks,8,) divides the dispersion curve into two portions : one (k, < k., thick solid
line) along which the effect of gravity is dominant and another (kr > k,, thin solid
line) along which the capillarity is dominant.

On the right part of Fig.1, we depict the crestlines following the formulation
(Eq.15 in [2]) for n = (1,2,---,5) associated with the dispersion curves plotted
on the left part of the figure. The Neumann-Kelvin ship waves represented by
dashed lines composed of transverse and divergent waves are present only in the
downstream and limited by a cusp line (dot-dashed line). The ship waves including
the surface tension are present in both upstream and downstream. The upstream
crestlines associated with the part of dispersion curve at k7 > k, are capillary waves
and plotted by thin solid lines. The wavelength of upstream capillary waves is of
order 2w F? [ kY.

The downstream crestlines (thick solid lines) associated with the part of disper-
sion curve at k, < k, are gravity-dominant waves. Comparing to the pure-gravity
waves (dashed lines), the transverse waves keep the same profile with a slight shorter
wavelength 27 F?/kj) instead of 27 F?. The most striking feature concerns the di-
vergent waves which disappear completely at this value of ¢ (in fact for o >0 given
in the following) due to the effect of surface tension. In their place, the transverse
waves are extended smoothly outward to a region limited by the ray (dotted line)
forming an angle 7, with the negative-z axis defined in

v = arctan[y/(—z)] < vo =7/2 — 0, (19)

The crestlines for n=(1,2,--- ,5) are depicted on Fig.2 for 0 =0.02 (left part). Only
those of downstream waves are drawn for the sake of clarity. The transverse waves
are represented by thick solid lines and the divergent waves by thin solid lines, while
the rest of capillary-gravity waves by dashed lines limited by the dotted ray (y="s)-
v, =0 at 0 =0 means that no capillary waves exist since the effect of surface tension
is ignored. At o = 0, = 1/2, the dispersion curve reduces to a point (2,0) and
Yo =m/2 which means that all steady waves disappear (no wavy deformation of the
free surface) since ship’s speed is less than the minimum velocity of capillary-gravity
waves so that waves propagating at ship’s speed cannot be generated.

There are two other important rays, more evident on the right part of Fig.2
on which only crestlines of divergent waves are kept. One represented by the thin
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Figure 2: Crestlines of capillary-gravity ship waves (left) and definition of rays (right)
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dot-dashed line is close to the cusp line of Kelvin ship waves, and another by thick
dot-dashed line. We denote the two rays respectively by v =1, and 7 = v, the
angles forming with the negative-z axis. Same as 9,, the ray-angles 7. and vy are
function of the parameter o. Following Eq.13 in [2], the value of =, is associated
with the normal direction at the first point of inflection along the dispersion curve,
which is quite close to that for the Neumann-Kelvin ship waves. There exists a
second inflection point along the dispersion curve of capillary-gravity ship waves at
low values of . The value of =g is given by the normal direction at this second
point of inflection. The ray-angle 7. becomes the cusp angle 7 =~.(0 =0) ~ 19°28'
of pure-gravity ship waves when ¢ — 0 while 7o tends to zero. It is shown that the
divergent waves can be found only in the region (y9 <7 <+,.) where transverse waves
appear as well. In the region near the ship’s track (0 <y <~g), only transverse waves
are present. Since 7 increases significantly with increasing o (corresponding to the
decrease of forward speed), the region (70 <7 <~.) where divergent waves appear is
more and more reduced. At 0 =09 & 0.133 (corresponding to U=Uy = 0.450 m/s)
there does not exist any divergent wave.

Y

The damping term & = exp(—puBy') due to fluid viscosity can be evaluated by

using (11) for ¢’ and B = —4k? cosf. In particular, the gravity-dominant transverse
waves in the downstream is dissipated at a rate proportional to
Eamexp [pd(k))*z] with k) ~1 for =<0 (20)

while the amplitude of capillary-dominant waves in the upstream is damped at a
rate proportional to

Eu~exp [ —pd(ky)’z] with Kk} ~1/0* for x>0 (21)

To reduce by a factor of e through the viscosity dissipation, the distances to travel
from the singularity are |z4| ~ 1/(4p) for the gravity waves and x, ~ o/(4u) for
capillary waves, which is 0~ times shorter than that for gravity waves!
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